M1. (a) weight (lifted)
or
height (lifted)
(b) any two from:

- calculate a mean
- spot anomalies
- reduce the effect of random errors
(c) as speed increases, the efficiency increases
(but) graph tends towards a constant value
or
appears to reach a limit
accept efficiency cannot be greater than 100\%
(d) heating the surroundings
(e) 0 (\%)

M2. (a) (i) 150

(ii) transferred to the surroundings by heating reference to sound negates mark
(iii) 0.75

450 / 600 gains 1 mark accept 75\% for 2 marks maximum of 1 mark awarded if a unit is given
(iv) 20 (s)
correct answer with or without working gains 2 marks correct substitution of 600 / 30 gains 1 mark
(b) (i) to avoid bias
(ii) use less power and last longer

1 LED costs $£ 16,40$ filament bulbs cost $£ 80$
or
filament costs (5 times) more in energy consumption
(iii) any one from:

- availability of bulbs
- colour output
- temperature of bulb surface

M3. (a) any two from:

- black is a good emitter of (infrared radiation)
accept heat for radiation
ignore reference to absorbing radiation
- \quad large surface (area)
- matt surfaces are better emitters (than shiny surfaces)
accept matt surfaces are good emitters
ignore reference to good conductor
(b) 90% or $0.9(0)$
efficiency $=\frac{\text { useful energy out }(\times 100 \%)}{\text { total } \text { energy in }}$
allow 1 mark for correct substitution, ie $\frac{13.5}{15}$ provided no subsequent step shown an answer of 90 scores 1 mark an answer of $90 / 0.90$ with a unit scores 1 mark
(c) (producing) light allow (producing) sound
(d) any two from:
- wood is renewable
accept wood grows again / quickly accept wood can be replanted
- (using wood) conserves fossil fuels accept doesn't use fossil fuels
- wood is carbon neutral
accept a description
cheaper / saves money is insufficient
(e) $E=m \times c \times \theta$

2550000
allow 1 mark for correct substitution
ie $100 \times 510 \times 50$
provided no subsequent step shown
answers of 1020 000, 3570000 gain 1 mark
joules /J
accept $\mathrm{kJ} / \mathrm{MJ}$
do not accept j
for full credit the unit and numerical answer must be consistent

